Networking the Netty

A (slightly more than ankle) deep dive into packets in K8s

Anthony Critelli

Kubernetes concept overview

e Node - A host running the K8s stack. Very roughly analogous to a hypervisor
in traditional virtualization

e Pod - The smallest schedulable unit of work in K8s.

o Often, but not necessarily, a single container® in simple environments.
o Anpod is scheduled on a single node

e Service - A group of pods that expose a network service for others to
consume.

* Excluding the pause container, in Docker

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.ianlewis.org/en/almighty-pause-container

What problems are we trying to solve?

e It might sound like a stupid question, but: what are we really trying to do when
we talk about networking in Kubernetes?

e Well, a few things:
o We want workload (pods) within our cluster to be able to talk to each other
o We want workload within our cluster to talk to the services that we have in our cluster

o We want users outside of our cluster to talk with some of our services
e Let's see how all this works

Networking Within the Cluster

Internal Cluster Networking

e Pods need a way to talk to each other

e There needs to be a way to expose services for other pods in the cluster to
access

Example:

e An etcd service is composed of a set of pods. It exposes a service endpoint
(192.168.100.1) for other pods to access.

e A web service, also composed of multiple pods, needs to be able to hit the
etcd service on 192.168.100.1

e They all want to do this without caring about the underlying physical network

The Container Network Interface (CNI)

e The CNI is concerned with (wait for it...) networking for individual containers

e Kubernetes wants each pod to have a IP address
o The CNI plugin handles allocation and deletion (of interfaces and IPs) as pods are created and
destroyed

e Typically, you don’t just deploy a CNI plugin. You deploy an entire network
plugin that also implements a CNI

o Calico is a popular one: https://www.projectcalico.org/
o https://kubernetes.io/docs/concepts/cluster-administration/networking/

e \Why are there so many options for network plugins? Because different

plugins offer different features.
o More on that soon

https://github.com/containernetworking/cni
https://www.projectcalico.org/
https://kubernetes.io/docs/concepts/cluster-administration/networking/

How does the CNI work?

e Pods run in different network namespaces and
we want to connect them to the default system -------- - - - - -~ -~ -~ -~ -~~~
namespace

o They only see interfaces in their namespace

e To accomplish this Virtual Ethernet (veth) pairs

are set up
o One interface exists in the pod namespace

o The other interface exists in the default namespace
o Aveth connects them together across the namespace

eth0f 192.168.10.1

| I s g— e o el i T
Pod Networl k Names pace
£l
g
SRS S D | S R Default Network Namespace

A

nodel
192.168.0.1

https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking/#veth

Step-by-step Example

First, we'll find a pod to look at:

fsh$ kubectl get pod -o wide -n demo-ns demo-pod6

IP NODE NOMINATED NODE READINESS GATES

NAME READY STATUS RESTARTS AGE
raspi02 <none> <none>

demo-pod6 1/1 Running 8 23h 10.205.133.129

We see this pod is on raspi02 with an IP of 10.205.133.129. Next, let’s find the
container ID:

root@raspi02:/home/ansible# docker ps | grep demo

7d92754f28ee alpine "sleep 10000"
k8s demo-container demo-pod6 demo-ns ec09ch4e-9ec6-4916-8822-01427a8el11df 8
24 hours ago Up 24 hours

About an hour ago Up About an hour

6e2cd91f32b8 k8s.gcr.io/pause:3.1 "/pause"
k8s POD demo-pod6 demo-ns ec09cb4e-9ec6-4916-8822-01427a8elldf 0O

For this example, it doesn’t matter if you use the app container or the pause
container. They share the same network namespace. We'll go with the app

(7d92754128¢ee)

Step-by-step Example Continued

Then we figure out what the PID of the container is:

'{{ .State.Pid }}'

root@raspi®2:/home/ansible# docker inspect 7d92754f28ee --format

2547

Let’s enter the namespace for that PID and examine the interface:

root@raspi02:/home/ansible# nsenter -t 2547 -n ip -br a
lo UNKNOWN 127-0-0-178

tunlO@NONE DOWN
eth0@if50 upP 1102205 1837129737

Hey look! That's the pod IP from the earlier kubectl output (10.205.133.129).

Step-by-step Example Continued

Now, how does this talk to the “host’? Let’s see what the other end of the veth is:

root@raspi®2:/home/ansible# nsenter -t 2547 -n ethtool -S eth0
NIC statistics:
peer ifindex: 50

rx_queue 0 xdp packets: 0
rx_queue 0 xdp bytes: 0
rx_queue 0 xdp drops: 0

The other end of this veth tunnel is interface index 50. So now we have to find the
interface with index 50 in the default namespace:

root@raspi02:/home/ansible# ip link sh | grep '~50'

50: caliae4a3a51b92@if4: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1440 qdisc noqueue state UP mode DEFAULT group default

The host-side interface here is caliae4a3a51b92, which appears to be bridged to
interface index 4.

Step-by-step Example Continued

So what's interface index 47
root@raspi02:/home/ansible# ip link sh | grep '"4:'

4: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc noqueue state DOWN mode DEFAULT group default

The docker bridge! Now we’re “bridged” to an interface (technically a bridge) on
the host. We’'ll stop here, but at this point: traffic would just use the normal host
routing table.

The same sample, but overlaid on a
diagram

raspi02

fsh$ kubectl get pod -0 wide -n demo-ns demo-pod6
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
demo-pod6 47/ Running 8 23h 10.205.133.129 raspio2 <none> <none>

demo-pod6

Pod Network Namespace

I
I
I
|
I
I
I
I
I
s P e s, B eta e e s = | |
I
I
I
I
I
I
I
I
I

raspi02

hour ago Up About an hour

Up 24 hours

demo-pod6
Docker ID: 7d92754f28ee

Pod Network Namespace

,_
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

root@raspi02:/home/ansible# docker inspect 7d92754f28ee --format '{{ .State.Pid }}'
2547

demo-pod6
Docker ID: 7d92754f28ee
PID: 2547

Pod Network Namespace

I
I
|
|
I
I
I
I
I
Lcos crms s e e e e e s e e = | I
|
I
I
I
I
I
I
I
I

raspio2

root@raspi@2:/home/ansible# nsenter -t 2547 -n ip -br a
lo UNKNOWN 12720808178
tunlO0@NONE DOWN

eth0@if50 up 160220581 331297/32

demo-pod6
Docker ID: 7d92754f28ee
PID: 2547

10.205.133.129

Pod Network Namespace

,_
I
I
I
I
I
I
I
|
|
!
I
I
I
I
I
[5

raspi02

le# nsenter -t 2547 -n ethtool -S eth@

rx_queue 0 xdp d

demo-pod6
Docker ID: 7d92754f28ee
PID: 2547

10.205.133.129

Pod Network Namespace

Default Network Namespace_I

raspi02

mtu 1440 qdis e DEFAULT group default

demo-pod6
Docker ID: 7d92754f28ee
PID: 2547

Pod Network Namespace

Default Network Namespace
2

caliae4a3a51b92

i
I
I
I
I
I
I
|
I
|
I
I
I
I
L

raspi02

root@raspif2:/h

demo-pod6
Docker ID: 7d92754{28ee
PID: 2547

Pod Network Namespace

Default Network Namespace
N

caliae4a3a51b92

docker0

.
I
I
I
I
I
|
|
I
|
I
I
I
I
L

raspi02

Network Plugins - Beyond just IPs

In a really basic topology, all of your K8s nodes could be on one layer 2

subnet

o Inthis case, the network plugin can (mostly) just hand out IP addresses and configure
container NICs

But maybe you want more advanced functionality
o BGP advertisement of your pod IPs
o Stretched layer 2 / the ability to put your nodes on different IP subnets
o Firewalling capabilities and security controls to enforce policy for inter-pod communication

Different network plugins have different advanced capabilities
Let’s look at 2 basic examples of how network plugins might handle pod
addressing and communication

Simple topology - single broadcast domain

podl
192.168.10.1

pod3
192.168.10.3

I
I
I
I
pod2 |
I
I
I
I

192.168.10.2

nodel
192.168.0.1

Qo 0

I
I
I
I
pod5 |
I
|
I
I

pod4
192.168.10.4

pod6
192.168.10.6

g

192.168.10.5

&

node

node2
192.168.0.2

pod7
192.168.10.7

Qo 0

I
I
I
I
pod8 |
I
|
I
I

pod9
192.168.10.9

—_ — ——

192.168.10.8

&

node

node3
192.168.0.3

More advanced topology - stretched L2

O 0

|

I

|

|

| pod7 pod8
| 192.168.10.7 192.168.10.8
|

|

|

I

|

pod9
192.168.10.9

|
|
| node
|
|

|

|

I

I node3
| pod1 pod2 e 172.16.1.1
| 192.168.10.1 102,168,102 jmmm—

I

I

I

|

I

r hl
pod3 |
192.168.10.3 |
A
|
|
nodel |
192.168.0.1 pod4 pod5
|
|
|
|

pod6

|

|

|

|

I

| 192168104 192.168.10.5
|

|

|

|

| 192.168.10.6

node2
172.16.1.1

But what about service IPs?

e Remember that a group of pods can expose a service that is reachable via a
single IP within the cluster

e How does that work?

e How can we ensure that a single IP is reachable everywhere, and potentially
served by multiple pods? What if a pod tries to access a service that doesn’t

have any pods on the same host?
o E.g., what if our web service tried to access the etcd service, but there were no local pods?

e Enter the kube-proxy

Kube-proxy

“What is the most morally depraved thing we can do with
iptables?” - Someone building Kubernetes, probably

| SEE YOU...
e Kube-proxy is a container that runs on every
node
e It handles programming of iptables rules and
network config so that services are

reachable

AND A LOT JESUS THAT'S
OF iptables A LOT OF

iptables

root@raspi03:/home/ansible# iptables-save | wc -1
559

Meme credit: https://itnext.io/kubernetes-networking-behind-the-scenes-39a1ab1792bb

https://itnext.io/kubernetes-networking-behind-the-scenes-39a1ab1792bb

kube-proxy continued

e A service is exposed internally via a ClusterlP
o A pod can connect to this IP from any node
e This is accomplished via a bunch of iptables magic

o You can also use IPVS or the kube-proxy can forward traffic for you
o iptables mode seems to be the most common approach

In this example, any pod that tries to hit 10.103.220.213 will magically get sent to a
pod for the “hass-service™:

fsh$ kubectl get services -o wide
NAME TYPE
hass-service LoadBalancer

kubernetes ClusterIP

mgtt-service LoadBalancer
pihole-tcp-service LoadBalancer
pihole-udp-service LoadBalancer

CLUSTER-IP
1OE10SE2200213
10.96.0.1
10.107.180.209
10.100.51.69
102 10821858152

EXTERNAL-IP
10.200.1.42
<none>

10.200.1.43
10.200.1.41
10.200.1.40

PORT(S)

80:31842/TCP

443/TCP
1883:31503/TCP,9001:31925/TCP
80:30105/TCP,443:31676/TCP
53:31413/UDP,67:30280/UDP

AGE
16d
17d
7d22h
17d
17d

SELECTOR
app=hass
<none>
app=mqtt
app=pihole
app=pihole

kube-proxy Step-by-step

First, let’s look at the ports involved in a service. There are 3 that we care about in
the example below:

Port: this is the port that the service is actually accessible on from within the

cluster
TargetPort: this is where Kubernetes will forward the traffic to in the container

NodePort: the port on the node from which the service is accessible

fsh$ kubectl describe service hass-service | grep -1i port
Port: <unset> 80/TCP

TargetPort: 8123/TCP
NodePort: <unset> 31842/TCP

HealthCheck NodePort: 32449

kube-proxy Step-by-step

Port: A different pod in the cluster can hit the ClusterlP (10.103.220.213) on the
Port (80) and get a response:

fsh$ kubectl exec pihole-deployment-76bb945847-x4q9d --

curl -s http://10.103.220.213:80
<!IDOCTYPE html><html lang="en"><head><link rel="preload" href="/frontend latest/core.019f4c68.js" as="script" crossorigin="use-credentials"><link
rel="preload" href="/static/fonts/roboto/Roboto-Regular.woff2" as="font" crossorigin><link rel="preload" href="/static/fonts/roboto/Rob

TargetPort: The app in this pod listens on 8123.

- netstat -tl

fsh$ kubectl exec hass-deployment-5959fd979d-2bksh -
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address oreig

LISTEN

Address State
*
* LISTEN

n
0
8

F
(0 030202050:8123 0
(0 0 0.0.0.0:8989 0

NodePort: | can hit the node port (31842) from the host and get a web response

root@raspi®3:/home/ansible# curl localhost:31842

<IDOCTYPE html><html lang="en"><head><link rel="preload" href="/frontend latest/core.019f4c68.js" as="script" crossorigin="use-credentials"><link

rel="preload" href="/static/fonts/roboto/Rob

kube-proxy Step-by-step

First, let’'s look at the PREROUTING chain in the NAT table on a host:

root@raspi03:/home/ansible# iptables -t nat -nvL PREROUTING
Chain PREROUTING (policy ACCEPT 461 packets, 46004 bytes)
pkts bytes target prot opt in out source destination

197K 17M cali-PREROUTING all -- * X
197K 17M KUBE-SERVICES all -- <

() 0.0.0.0/0 /* cali:6gwbT8c1XdHdC1lbl */
0.0.0.
233 14510 DOCKER all -- * 0.0:0.

0.0.0.0/0 /* kubernetes service portals */
7 0.0.0.0/0 ADDRTYPE match dst-type LOCAL

0
0
)

That KUBE-SERVICES chain looks like it might be relevant. Let’s look for our
service IP (10.103.220.213):

root@raspi®3:/home/ansible# iptables -t nat -nvL KUBE-SERVICES | grep '10.103.220.213'
0 0 KUBE-MARK-MASQ tcp -- * * 110.201.0.0/16 10.103.220.213 /* default/hass-service: cluster IP */ tcp dpt:80

0 0 KUBE-SVC-WCJSPVZVDFRKGG4S tcp -- * 3 0.0.0.0/0 10:103:220.213 /* default/hass-service: cluster IP */
tcp dpt:80

KUBE-SVC sounds relevant. Let’s look at that.

kube-proxy Step-by-step

Looking at the relevant KUBE-SVC chain:

root@raspiO3:/home/ansible# iptables -t nat -nvL KUBE-SVC-WCJSPVZVDFRKGG4S
Chain KUBE-SVC-WCJSPVZVDFRKGG4S (3 references)

pkts bytes target prot opt in out source destination
0 0 KUBE-SEP-6NGDCEZCNCPTK3HH all -- * 0.0.0.0/0 0.0.0.0/0

Another layer of indirection! Let’s look at KUBE-SEP:

root@raspi03:/home/ansible# iptables -t nat -nvL KUBE-SEP-6NGDCEZCNCPTK3HH
Chain KUBE-SEP-6NGDCEZCNCPTK3HH (1 references)
pkts bytes target prot opt in out source destination

0 0 KUBE-MARK-MASQ all -- * * 10.201.133.152 0.0.0.0/0
0 0 DNAT tep -- * * 0.0.0.0/0 0.0.0.0/0 tcp DNAT [unsupported revision]

A destination NAT! | think the “[unsupported revision]” here is a bug/discrepancy between the iptables and
nftables version. If this bug weren’t there, you’d see the container’s IP as the DNAT.

kube-proxy Step-by-step

Here’s what a DNAT should look like (taken from my minikube VM):

$ iptables -t nat -nvL KUBE-SEP-KLHDI3EBBS77E4EW
Chain KUBE-SEP-KLHDI3EBBS77E4EW (1 references)
pkts bytes target prot opt in out source destination
0 0 KUBE-MARK-MASQ all -- * ok W72 7 . 6). 5 0.0.0.0/0
0 O DNAT tcp -- % 0.0.0.0/0 OEOEO=070 EepRto: 1y 21y EONE =80

fsh$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
demo-deployment-6f76c696df-5t6r7 171 Running 0 20s 172.17.0.5 minikube <none> <none>

External Networking

Handling External Traffic

e So you've built a Service
o It has multiple pods
o Each pod has received an IP from the CNI
o All the pods can talk to each other because you've used a network plugin
o Internally, your service is accessible via a ClusterlP. All pods can hit it.

e But how do your end user’s talk to these services in your cluster?
o NodePort
o LoadBalancer

o ExternalName (DNS based, not discussed here)

NodePort

e A very simple way of exposing your services outside the cluster without any
additional configuration
e A NodePort opens up a random port (if you don’t specify) on all hosts in the

cluster
o Traffic to this port is automatically forwarded to a pod hosting your service

e You basically need to do your own load balancing to make this usable

o E.g., you could put NGINX or HAProxy in front of the cluster to route traffic based on web
addresses

e And then you’d need a way to keep track of all the ports and update the

upstream load balancer.
o Do-able, as many LBs have APIs, but a pain (maybe less so with an Operator).

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

NodePort Diagram

node
d Nodes translate this traffic to
User accesses any node on 192 (168810 " the service and Semcjito an
: 40 appropriate po
NodePort 31842 Listen port 31842 pprop p

4 e

—http://app:31842——— > Web App Service
Cluster IP: 192.168.100.2
node
User node2
192.168.0.2

Listen port 31842

node

node3
192.168.0.3
Listen port 31842

NodePort Example

| have a service that has been given a NodePort of 31018 (which will send traffic
to port 80 in the container:

fsh$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

demo-nginx-service NodePort 10.98.229.128 <none> 80:31018/TCP

There’s only one pod, and it’'s on raspiO3:

fsh$ kubectl get pods --selector=app=demo-nginx -o custom-columns=NAME:.metadata.name,NODE: .spec.nodeName
NAME NODE

demo-deployment-6fc546dc5-v4n6x raspio3’

NodePort Example

| can hit the service from any of the three nodes in my cluster on port 31018:

fsh$ http raspi03:31018 --headers

HTTP/1.1 200 OK

Accept-Ranges: bytes

Connection: keep-alive

Content-Length: 612

Content-Type: text/html

Date: Sun, 29 Mar 2020 18:28:32 GMT

ETag: "5e5e6a8f-264"

Last-Modified: Tue, 03 Mar 2020 14:32:47 GMT
Server: nginx/1.17.9

fsh$ http raspif2:31018 --headers
HTTP/1.1 200 OK

Accept-Ranges: bytes

Connection: keep-alive
Content-Length: 612

Content-Type: text/html

Date: Sun, 29 Mar 2020 18:28:36 GMT

ETag: "5e5e6a8f-264"

Last-Modified: Tue, 03 Mar 2020 14:32:47 GMT
Server: nginx/1.17.9

fsh$ http raspi0l:31018 --headers

HTTP/1.1 200 OK

Accept-Ranges: bytes

Connection: keep-alive

Content-Length: 612

Content-Type: text/html

Date: Sun, 29 Mar 2020 18:36:33 GMT

ETag: "5e5e6a8f-264"

Last-Modified: Tue, 03 Mar 2020 14:32:47 GMT
Server: nginx/1.17.9

LoadBalancer

e LoadBalancers assign an externally reachable IP to your service and then

figure out how to get that traffic into your cluster.
o LoadBalancers are effectively just API calls to external cloud provider services, such as an
AWS load balancer
o There is no reference implementation for on-premises deployments (this is totally insane
to me)
e MetallLB: Basically the only accessible way to do this on-prem
o So we better all hope this project stays around for a long time

e Let's take a look at MetalLB

o It's probably what you'll use if you’re doing an on-prem deployment
o Itll illustrate why networking knowledge is important for operating K8s

https://metallb.universe.tf/

MetalLB Fundamentals

e You configure MetalLB with one or more pools of IP addresses, and it hands
them out to your services

e MetalLB has two modes of operation: ARP Mode and BGP Mode
e ARP mode - the nodes that are hosting pods for the particular service will

respond to ARP requests for the service’s external IP address
o There's an obvious problem with this: it means that only one node can be active at a time

m Otherwise you can’t maintain a user’s session: each packet might end up going to a
different node
o This is very much like Keepalived

e BGP mode - each node with a pod for a service will advertise that service’s IP

to an upstream router using Border Gateway Protocol
o Allows for true ECMP performed by upstream router
o Need to be cognizant of the impact of topology changes on reachability

https://metallb.universe.tf/concepts/bgp/

MetalLB - ARP Mode

192.168.0.50

nodel is "active" so it replies
to ARP requests for

== A
I I
I I
node :

| nodel Web App Pod |

192.168.0.1
L -
r s — — —a T
| | Web App Service
| | External IP: 192.168.0.50
: node :
| node2 Web App Pod |

192.168.0.2

_—
http://192.168.0.50 —|
I
User 1
nodel is responding to
_— ARP for the service IP,
http://192.168.0.50 | so router sends all traffic
to nodel
User 2

If nodel fails, then node2

can take over

MetalLB - BGP Mode

http://192.168.0.50 —
User 1
> Router is able to
http://192.168.0.50 do ECMP to both
nodes
User 2

Advertises 192.168.0.50/32
to the router via BGP

r T L= T A
I I
I I
| node :
| nodel Web App Pod |
192.168.0.1
L - -
r s — — 1
I I
I |
node :
| node2 Web App Pod |
192.168.0.2
P I S _|

AN

Advertises 192.168.0.50/32
to the router via BGP

Web App Service
External IP: 192.168.0.50

Wrappimpg up

Finally, why should you care about any of this?

e | think networking, especially in “hashtagCloudNative” workloads, is very
important

e Too often, people handwave over the networking configuration
o This is fine, until it breaks and you have no idea how to even begin troubleshooting
o “kubectl -f github.com/yolo-network-project/my-plugin.yml” isn’t “how the network works

e Luckily, as you've seen: it's not too hard.
o It's just a bunch of iptables and strung-together network fundamentals
o Network protocols are still network protocols

e Areal example:

I've got MetalLB configured to hand out IPs on a wireless subnet of mine

Every ~5 minutes, without fail, I'd stop being able to reach a service

If | fired up a packet capture on a host, the problem would immediately disappear.
Anyone know what the issue was?

(@)
(@)
(@)
(@)

The issue in my example

e ..the symptom (losing connectivity every ~5 minutes) was related to ARP
o For some reason, MetalLB on the nodes would stop responding to ARPs for the service IP
o This was probably obvious to anyone who has worked in network engineering

e But why would it go away when trying to observe the problem with tcpdump?
o Well, what does tcpdump do to an interface? It sets it into promiscuous mode.

o This causes lower layer traffic that isn’t destined for a real interface on the node to filter up
through the network stack (normally this would be filtered out)

e Solution: apparently, raspis need their NICs manually set to promiscuous
mode for MetalLB to work

Additional Resources

e Kubernetes Networking: Behind the scenes

o Arreally outstanding guide that helped me when | got stuck trying to reverse engineer the CNI
e Kubernetes Docs: Publishing Services

o More info on how to publish services outside the cluster

e MetallB Concepts
o The MetalLB docs are quite good

e A Deep Dive into Iptables and Netfilter Architecture
o Agreat discussion of how to follow iptables tables and chains

e Areally awesome network flow chart
o Specifically for kube-proxy in iptables mode

https://itnext.io/kubernetes-networking-behind-the-scenes-39a1ab1792bb
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://metallb.universe.tf/concepts/
https://www.digitalocean.com/community/tutorials/a-deep-dive-into-iptables-and-netfilter-architecture
https://docs.google.com/drawings/d/1MtWL8qRTs6PlnJrW4dh8135_S9e2SaawT410bJuoBPk/edit

Thanks!

