
Networking the Netty
A (slightly more than ankle) deep dive into packets in K8s

Anthony Critelli



Kubernetes concept overview
● Node - A host running the K8s stack. Very roughly analogous to a hypervisor 

in traditional virtualization
● Pod - The smallest schedulable unit of work in K8s.

○ Often, but not necessarily, a single container* in simple environments.
○ A pod is scheduled on a single node

● Service - A group of pods that expose a network service for others to 
consume.

* Excluding the pause container, in Docker

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.ianlewis.org/en/almighty-pause-container


What problems are we trying to solve?
● It might sound like a stupid question, but: what are we really trying to do when 

we talk about networking in Kubernetes?
● Well, a few things:

○ We want workload (pods) within our cluster to be able to talk to each other
○ We want workload within our cluster to talk to the services that we have in our cluster
○ We want users outside of our cluster to talk with some of our services

● Let’s see how all this works



Networking Within the Cluster



Internal Cluster Networking
● Pods need a way to talk to each other
● There needs to be a way to expose services for other pods in the cluster to 

access

Example: 

● An etcd service is composed of a set of pods. It exposes a service endpoint 
(192.168.100.1) for other pods to access. 

● A web service, also composed of multiple pods, needs to be able to hit the 
etcd service on 192.168.100.1

● They all want to do this without caring about the underlying physical network



The Container Network Interface (CNI)
● The CNI is concerned with (wait for it…) networking for individual containers
● Kubernetes wants each pod to have a IP address

○ The CNI plugin handles allocation and deletion (of interfaces and IPs) as pods are created and 
destroyed

● Typically, you don’t just deploy a CNI plugin. You deploy an entire network 
plugin that also implements a CNI

○ Calico is a popular one: https://www.projectcalico.org/
○ https://kubernetes.io/docs/concepts/cluster-administration/networking/

● Why are there so many options for network plugins? Because different 
plugins offer different features.

○ More on that soon

https://github.com/containernetworking/cni
https://www.projectcalico.org/
https://kubernetes.io/docs/concepts/cluster-administration/networking/


How does the CNI work?
● Pods run in different network namespaces and 

we want to connect them to the default system 
namespace

○ They only see interfaces in their namespace

● To accomplish this Virtual Ethernet (veth) pairs 
are set up

○ One interface exists in the pod namespace
○ The other interface exists in the default namespace
○ A veth connects them together across the namespace

https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking/#veth


Step-by-step Example
First, we’ll find a pod to look at:

We see this pod is on raspi02 with an IP of 10.205.133.129. Next, let’s find the 
container ID:

For this example, it doesn’t matter if you use the app container or the pause 
container. They share the same network namespace. We’ll go with the app 
(7d92754f28ee)



Step-by-step Example Continued
Then we figure out what the PID of the container is:

Let’s enter the namespace for that PID and examine the interface:

Hey look! That’s the pod IP from the earlier kubectl output (10.205.133.129). 



Step-by-step Example Continued
Now, how does this talk to the “host”? Let’s see what the other end of the veth is:

The other end of this veth tunnel is interface index 50. So now we have to find the 
interface with index 50 in the default namespace:

The host-side interface here is caliae4a3a51b92, which appears to be bridged to 
interface index 4.



Step-by-step Example Continued
So what’s interface index 4?

The docker bridge! Now we’re “bridged” to an interface (technically a bridge) on 
the host. We’ll stop here, but at this point: traffic would just use the normal host 
routing table.



The same sample, but overlaid on a 
diagram



















Network Plugins - Beyond just IPs
● In a really basic topology, all of your K8s nodes could be on one layer 2 

subnet
○ In this case, the network plugin can (mostly) just hand out IP addresses and configure 

container NICs

● But maybe you want more advanced functionality
○ BGP advertisement of your pod IPs
○ Stretched layer 2 / the ability to put your nodes on different IP subnets
○ Firewalling capabilities and security controls to enforce policy for inter-pod communication

● Different network plugins have different advanced capabilities
● Let’s look at 2 basic examples of how network plugins might handle pod 

addressing and communication



Simple topology - single broadcast domain



More advanced topology - stretched L2



But what about service IPs?
● Remember that a group of pods can expose a service that is reachable via a 

single IP within the cluster
● How does that work?
● How can we ensure that a single IP is reachable everywhere, and potentially 

served by multiple pods? What if a pod tries to access a service that doesn’t 
have any pods on the same host?

○ E.g., what if our web service tried to access the etcd service, but there were no local pods?

● Enter the kube-proxy



kube-proxy
“What is the most morally depraved thing we can do with 
iptables?” - Someone building Kubernetes, probably

● Kube-proxy is a container that runs on every 
node

● It handles programming of iptables rules and 
network config so that services are 
reachable

Meme credit: https://itnext.io/kubernetes-networking-behind-the-scenes-39a1ab1792bb

https://itnext.io/kubernetes-networking-behind-the-scenes-39a1ab1792bb


kube-proxy continued
● A service is exposed internally via a ClusterIP

○ A pod can connect to this IP from any node

● This is accomplished via a bunch of iptables magic
○ You can also use IPVS or the kube-proxy can forward traffic for you
○ iptables mode seems to be the most common approach

In this example, any pod that tries to hit 10.103.220.213 will magically get sent to a 
pod for the “hass-service”:



kube-proxy Step-by-step
First, let’s look at the ports involved in a service. There are 3 that we care about in 
the example below:

● Port: this is the port that the service is actually accessible on from within the 
cluster

● TargetPort: this is where Kubernetes will forward the traffic to in the container
● NodePort: the port on the node from which the service is accessible



kube-proxy Step-by-step
Port: A different pod in the cluster can hit the ClusterIP (10.103.220.213) on the 
Port (80) and get a response:

TargetPort: The app in this pod listens on 8123.

NodePort: I can hit the node port (31842) from the host and get a web response



kube-proxy Step-by-step
First, let’s look at the PREROUTING chain in the NAT table on a host:

That KUBE-SERVICES chain looks like it might be relevant. Let’s look for our 
service IP (10.103.220.213):

KUBE-SVC sounds relevant. Let’s look at that.



kube-proxy Step-by-step
Looking at the relevant KUBE-SVC chain:

Another layer of indirection! Let’s look at KUBE-SEP:

A destination NAT! I think the “[unsupported revision]” here is a bug/discrepancy between the iptables and 
nftables version. If this bug weren’t there, you’d see the container’s IP as the DNAT. 



kube-proxy Step-by-step
Here’s what a DNAT should look like (taken from my minikube VM):



External Networking



Handling External Traffic
● So you’ve built a Service

○ It has multiple pods
○ Each pod has received an IP from the CNI
○ All the pods can talk to each other because you’ve used a network plugin
○ Internally, your service is accessible via a ClusterIP. All pods can hit it.

● But how do your end user’s talk to these services in your cluster?
○ NodePort
○ LoadBalancer
○ ExternalName (DNS based, not discussed here)



NodePort
● A very simple way of exposing your services outside the cluster without any 

additional configuration
● A NodePort opens up a random port (if you don’t specify) on all hosts in the 

cluster
○ Traffic to this port is automatically forwarded to a pod hosting your service

● You basically need to do your own load balancing to make this usable
○ E.g., you could put NGINX or HAProxy in front of the cluster to route traffic based on web 

addresses

● And then you’d need a way to keep track of all the ports and update the 
upstream load balancer.

○ Do-able, as many LBs have APIs, but a pain (maybe less so with an Operator).

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/


NodePort Diagram



NodePort Example
I have a service that has been given a NodePort of 31018 (which will send traffic 
to port 80 in the container:

There’s only one pod, and it’s on raspi03:



NodePort Example
I can hit the service from any of the three nodes in my cluster on port 31018:



LoadBalancer
● LoadBalancers assign an externally reachable IP to your service and then 

figure out how to get that traffic into your cluster.
○ LoadBalancers are effectively just API calls to external cloud provider services, such as an 

AWS load balancer
○ There is no reference implementation for on-premises deployments (this is totally insane 

to me)

● MetalLB: Basically the only accessible way to do this on-prem
○ So we better all hope this project stays around for a long time

● Let’s take a look at MetalLB
○ It’s probably what you’ll use if you’re doing an on-prem deployment
○ It’ll illustrate why networking knowledge is important for operating K8s

https://metallb.universe.tf/


MetalLB Fundamentals
● You configure MetalLB with one or more pools of IP addresses, and it hands 

them out to your services
● MetalLB has two modes of operation: ARP Mode and BGP Mode
● ARP mode - the nodes that are hosting pods for the particular service will 

respond to ARP requests for the service’s external IP address
○ There’s an obvious problem with this: it means that only one node can be active at a time

■ Otherwise you can’t maintain a user’s session: each packet might end up going to a 
different node

○ This is very much like Keepalived

● BGP mode - each node with a pod for a service will advertise that service’s IP 
to an upstream router using Border Gateway Protocol

○ Allows for true ECMP performed by upstream router
○ Need to be cognizant of the impact of topology changes on reachability

https://metallb.universe.tf/concepts/bgp/


MetalLB - ARP Mode



MetalLB - BGP Mode



Wrapping up
Please stop talking



Finally, why should you care about any of this?
● I think networking, especially in “hashtagCloudNative” workloads, is very 

important
● Too often, people handwave over the networking configuration

○ This is fine, until it breaks and you have no idea how to even begin troubleshooting
○ “kubectl -f github.com/yolo-network-project/my-plugin.yml” isn’t “how the network works”

● Luckily, as you’ve seen: it’s not too hard.
○ It’s just a bunch of iptables and strung-together network fundamentals
○ Network protocols are still network protocols

● A real example:
○ I’ve got MetalLB configured to hand out IPs on a wireless subnet of mine
○ Every ~5 minutes, without fail, I’d stop being able to reach a service
○ If I fired up a packet capture on a host, the problem would immediately disappear.
○ Anyone know what the issue was?



The issue in my example
● ...the symptom (losing connectivity every ~5 minutes) was related to ARP

○ For some reason, MetalLB on the nodes would stop responding to ARPs for the service IP
○ This was probably obvious to anyone who has worked in network engineering

● But why would it go away when trying to observe the problem with tcpdump?
○ Well, what does tcpdump do to an interface? It sets it into promiscuous mode.
○ This causes lower layer traffic that isn’t destined for a real interface on the node to filter up 

through the network stack (normally this would be filtered out)

● Solution: apparently, raspis need their NICs manually set to promiscuous 
mode for MetalLB to work



Additional Resources
● Kubernetes Networking: Behind the scenes

○ A really outstanding guide that helped me when I got stuck trying to reverse engineer the CNI
● Kubernetes Docs: Publishing Services

○ More info on how to publish services outside the cluster
● MetalLB Concepts

○ The MetalLB docs are quite good
● A Deep Dive into Iptables and Netfilter Architecture

○ A great discussion of how to follow iptables tables and chains
● A really awesome network flow chart

○ Specifically for kube-proxy in iptables mode

https://itnext.io/kubernetes-networking-behind-the-scenes-39a1ab1792bb
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://metallb.universe.tf/concepts/
https://www.digitalocean.com/community/tutorials/a-deep-dive-into-iptables-and-netfilter-architecture
https://docs.google.com/drawings/d/1MtWL8qRTs6PlnJrW4dh8135_S9e2SaawT410bJuoBPk/edit


Thanks!


