
Linux Tracing
Anthony Critelli



All views and information expressed in this presentation are my own, and do not 
represent the views or opinions of any employer, present, past, or future.



About me
● Linux systems engineer
● Dislike colorful slides
● Started career as a network engineer

○ Not much interesting going on in networking (other than marketing buzzwords)
○ Lots interesting going on in Linux

● Interests
○ Automation
○ Occasionally blog (both on my personal site and for RedHat Enable SysAdmin)

● “Hey, you look familiar”
○ Former IST (the school formerly known as NSSA now known as iSchool) sysadmin
○ Former CCDC coach (0-1 record, they fired me. JK, I stopped working at RIT)

You don’t need a 
picture of me 
here because I’m 
standing in front 
of you



What do I mean by tracing?
● Observing the execution of an arbitrary program, including the kernel itself, as 

its running
● In particular, I’d like to:

○ Attach to a live program
○ Have low overhead

● There are a lot of tracers for Linux
○ http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

● We’ll focus on two tracing tools today, just because:
○ Ftrace
○ eBPF, specifically the BCC project

http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html


Why might you trace?
● Troubleshooting - many userland programs have trace probes (or can be 

compiled with them).
○ Example: MySQL

● Performance analysis - understand what your code is doing and where it 
might be bottlenecking, among other things

● For the learning opportunity - start tracing a user or kernel function, and you’ll 
find yourself down the rabbit hole of trying to better understand the codebase

● Demystify the black box. Computers really aren’t magic.
○ Except they kind of are. I mean, this is all a bunch of sand doing math real quick so that you 

can shitpost on Workplace



What do I need before I start?
● A basic knowledge of C, especially a basic knowledge of pointers

○ You can start playing around without this, but it helps a lot
○ Trust me: just take the 15 minutes needed to refresh your knowledge of pointers

● A basic understanding of how Linux works
○ User vs. kernel space, etc.

● Willingness to be very out of your element, unless you do a lot of 
programming in C, or kernel development

○ There are a lot of rabbit holes to follow



User Space vs. Kernel Space

https://www.redhat.com/en/blog/architecting-containers-part-1-why-understanding-user-space-vs-kernel-space-matters





Tools
● Many tools, but we’ll look at Ftrace and eBPF (specifically, the BCC tools)
● Why?

○ It’s what I’m personally “comfortable” with, and I’m the one talking at you

● Ftrace has a low barrier to entry, you can immediately start looking at what 
your kernel is doing

● eBPF is really gaining popularity
○ Highly espoused by our lord and savior Brendan Gregg

● I’ve found that using a combination of Ftrace (for initially looking at things) and 
eBPF/BCC have allowed me to start tracing interesting things



Terminology: Static vs. Dynamic? User vs. Kernel?
● Static tracing - the program’s source code must be instrumented to expose a 

probe
○ Requires modifying the code
○ Many programs do expose some static trace probes

● Dynamic tracing - source code modification isn’t necessary
○ Often just requires installing debugging symbols

● User tracing - tracing of code that executed in userspace
● Kernel tracing - tracing of code (the kernel and its functions) that run in kernel 

space



Ftrace
https://www.kernel.org/doc/Documentation/trace/ftrace.txt

● Kernel function tracer (actually a collection/framework of tracing tools)
● Has many useful built-in tracers: hardware latency, function graphing, 

interrupt requests, block I/O, etc.
● You can interact with it like a file system at /sys/kernel/tracing or 

/sys/kernel/debug/tracing
○ There’s also a front-end called trace-cmd

https://www.kernel.org/doc/Documentation/trace/ftrace.txt


eBPF
● Grew out of BPF (Berkeley packet filters)

○ Wait what? Packets?
○ Yeah: turns out it’s useful to run some user code inside the kernel

● eBPF is an in-kernel “virtual machine”
○ That is: the eBPF code compiles down to its own bytecode that the kernel executes
○ No, it’s not a Windows XP VM running in your kernel

● It’s fast: Netflix runs some of their instrumentation in production
● Writing eBPF bytecode is miserable (like, you know: writing any kind of 

bytecode)
○ I’ve never done this
○ Tools have been developed to provide front-ends



The eBPF Compiler collection (BCC)
https://github.com/iovisor/bcc

● A set of tools to make writing and interacting with eBPF easier
○ Write the kernel instrumentation in C
○ Write frontends in Python

● Why is this neat?
○ You can do kernel eBPF things in C, as you would expect
○ You can then send this data to userspace Python scripts
○ It’s much easier to work with data in Python

■ Still be considerate of how often things are getting sent to userspace (expensive)

https://github.com/iovisor/bcc


BCC Continued
● BCC has some nice things to make your life easier
● Functions for writing to shared tracing pipe (same one used by ftrace)
● Macros and functions for things like:

○ Maintaining hashes that can later be accessed by userspace
○ Building histograms, also accessible in userspace later

● The repository also has a wealth of existing, pre-written tools
○ These can probably do most things you’d be interested in
○ Great examples of how to write your own programs



BPF Trace
https://github.com/iovisor/bpftrace/

● A higher level tracing language on top of eBPF and BCC
● Great for writing one-liners

○ Lots of examples on their GitHub

● Won’t be discussing it further here

https://github.com/iovisor/bpftrace/


(some) Things that you can do with eBPF and these tools

● Dynamically trace kernel functions (entry and return) and get their arguments
○ Remember, dynamically just means that the kernel doesn’t need any special trace points to 

support this

● Do the same thing for userspace applications
○ Typically, you’d install the debugging symbols/recompile a package with debugging enabled 

for the binary that you’re interested in playing with

● Do the same thing for syscalls
● Perform these same operations with static trace points

○ Many applications expose this kind of instrumentation



http://www.brendangregg.com/ebpf.html



So, where do I start?
● Learning where to start can be daunting, especially if you just want to learn 

and don’t have a defined use case
● What I found useful:

○ Pick some arbitrary thing, like doing a DNS lookup with nslookup
○ Observe it using ftrace.
○ See what kernel functions are called
○ Pick some of the more obvious ones (e.g. network, I/O, filesystem, etc.)
○ See if you can write a BCC program to collect some data (how many times the function is 

called, its arguments, etc.)

● Hopefully, this presentation will give you some ideas in practice
● Everyone learns differently: honestly, it’s probably better to read the example 

code first, then dive in



Live Demo



Tips and Tricks for Learning
● All of these tools have lots of examples

○ The eBPF ecosystem, in particular, has tons of pre-written tools and examples

● I found the BCC developer tutorial to be helpful (check the BCC docs folder)
● While the eBPF tools provide a lot of features, none of this is really “batteries 

included”
○ Expect to try and fail a lot
○ Be aware of differences between eBPF versions (e.g. you might be reading docs for a newer 

version)

● Just get started: find something that sounds neat, and learn to explore it



A few resources
● Review the tools and examples in the previously repositories
● Brendan Gregg’s blog http://www.brendangregg.com
● Bootlin’s Elixir tool for browsing kernel source: 

https://elixir.bootlin.com/linux/latest/source
● A packet’s journey through the kernel: 

https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-linux-networki
ng-stack-sending-data/

● Julia Evan’s blog: https://jvns.ca
● A bunch of eBPF resources: 

https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

http://www.brendangregg.com
https://elixir.bootlin.com/linux/latest/source
https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/
https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/
https://jvns.ca
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/


Thanks! Questions?

critellia@gmail.com
www.acritelli.com

mailto:critellia@gmail.com
http://www.acritelli.com

